

EMC TEST REPORT

For

Oxygen analyser

Model Number: TEK-OX

Report Number

Test Laboratory Shenzhen Academy of Metrology and Quality

Inspection

Site Location

National Testing Center for Digital Electronic Products

Bldg. Metrology and Quality Inspection, Longzhu

Road, Shenzhen, Guangdong, China

Tel 0086-755-26941599 Fax 0086-755-26941545 Web www.smq.com.cn

TEST REPORT DECLARATION

Applicant

: Vandagraph Limited

Address

: 15 station Road Crosshills Keighley West Yorkshire BD20 7DT

Manufacturer

: Vandagraph Limited

Address

: 15 station Road Crosshills Keighley West Yorkshire BD20 7DT

Factory

: Justec Shenzhen Co., Ltd.

Address

: Floor 9, ZongHe Building, ZhongXing Industry Zone, ChuangYe

Road, Nanshan, Shenzhen, China, 518054

EUT Description

: Oxygen analyser

Trade Mark(s)

MODEL No

: TEK-OX

Test Standards:

IEC 60601-1-2: 2007

The EUT described above is tested by Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory to determine the maximum emissions from the EUT and ensure the EUT to be compliance with the immunity requirements of the EUT. Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory is assumed full responsibility for the accuracy of the test results.

The test report is valid for above tested sample only and shall not be reproduced in part without written approval of the laboratory.

Project

Engineer:

Date:

Apr. 07, 2011

Checked by:

Dewelly Yang

Date:

Apr. 07, 2011

Approved by:

Peter Lin)

Date:

Apr. 07, 2011

TABLE OF CONTENTS TEST RESULTS SUMMARY.....5 1. GENERAL INFORMATION......6 2. Report information......6 Laboratory Accreditation and Relationship to Customer......6 2.2. Measurement Uncertainty......7 2.3. PRODUCT DESCRIPTION.....8 3. EUT Description8 3.1. Block Diagram of EUT Configuration.....8 3.2. Operating Condition of EUT8 3.3. 3.4. Test Conditions 8 Support Equipment ______8 3.5. 3.6. Modifications8 Performance Criterion9 3.7. 4. Test Equipment Used to Measure Radiated Disturbance......10 4.1. Test Equipment Used to Measure Electrostatic Discharge Immunity10 4.2. Test Equipment Used to Measure Radio Frequency Electromagnetic Fields 4.3. Test Equipment Used to Measure Power frequency magnetic field Immunity .. 10 4.4. RADIATED DISTURBANCE TEST11 5. 5.1. 5.2. 5.3. 5.4 Test Data11 ELECTROSTATIC DISCHARGE IMMUNITY TEST......13 6. 6.1. Test Procedure13 6.2. 6.3. Test Data14 RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST......15 7. 7.1. 7.2.

	7.3.	Test Data
8.	POW	/ER FREQUENCY MAGNETIC FIELD IMMUNITY TEST16
	8.1.	Test Requirements
	8.2.	Test Procedure
	8.3.	Test Data
APP	ENDIX	I TEST PICTURES
APP	ENDIX	II EUT PICTURES
APP	ENDIX	II EXAMPLE OF GUIDANCE AND MANUFACTURER'S DECLARATION25

1. TEST RESULTS SUMMARY

Table 1 Test Results Summary

Test Items	Compliance Level
Radiated disturbance	CISPR 11 Group 1 Class B
ESD Immunity	±6kV Contact discharge ±8kV Air discharge
Radiated Electromagnetic Field Immunity	3V/m
Power Frequency Magnetic Field	3A/m

Report No.: WT118000614

Page 5/28

2. GENERAL INFORMATION

2.1. Report information

- 2.1.1.This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that SMQ approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that SMQ in any way guarantees the later performance of the product/equipment.
- 2.1.2.The sample/s mentioned in this report is/are supplied by Applicant, SMQ therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.
- 2.1.3.Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through SMQ, unless the applicant has authorized SMQ in writing to do so.

2.2. Laboratory Accreditation and Relationship to Customer

The testing report were performed by the Shenzhen Academy of Metrology and quality Inspection EMC Laboratory (Guangdong EMC compliance testing center), in their facilities located at Bldg. of Metrology & Quality Inspection, Longzhu Road, Nanshan District, Shenzhen, Guangdong, China. At the time of testing, Laboratory is accredited by the following organizations:

China National Accreditation Service for Conformity Assessment (CNAS) accredits the Laboratory for conformance to FCC standards, EMC international standards and EN standards. The Registration Number is CNAS L0579.

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number are 97379(open area test site) and 979748 (semi anechoic chamber).

The Laboratory is registered to perform emission tests with Industry Canada (IC), and the registration number is 4174A.

TUV Rhineland accredits the Laboratory for conformance to IEC and EN standards, the registration number is E2024086Z02.

Report No.: WT118000614

Page 6/28

2.3. Measurement Uncertainty

Radiated Emission
30MHz~1000MHz 4.5dB
1GHz~18GHz 4.6dB

ESD Immunity

It is compliant with the requirements of the standard at the confidence of 95%.

Radiated Immunity 1.78dB

Power Frequency Magnetic Field Immunity

It is compliant with the requirements of the standard at the confidence of 95%.

3. PRODUCT DESCRIPTION

3.1.EUT Description

Description

: Oxygen analyser

Applicant

: Vandagraph Limited

Model Number

: TEK-OX

EUT

. ILN-UA

Classification

: Not LIFE-SUPPORTING EQUIPMENT and SYSTEMS

Operating

Location

: Non-shielded Location

Voltage

DC 3V (Battery AA 1.5V x 2)

Remark:

3.2. Block Diagram of EUT Configuration

EUT

Test mode 1

3.3. Operating Condition of EUT

Test mode 1: Measuring

3.4. Test Conditions

Date of test: Mar.04, 2011- Mar.21, 2011

Date of EUT Receive: Mar.02, 2011

Temperature: 18-21℃ Relative Humidity: 52-60%

3.5. Support Equipment

N/A

3.6. Modifications

No modification was made.

3.7. Performance Criterion

The EQUIPMENT and SYSTEMS shall be able to provide the essential performance and remain safe. The following DEGRADATIONS associated with essential performance and safety shall not be allowed:

- component failures;
- changes in programmable parameters;
- reset to factory defaults (manufacturer's presets);
- change of operating mode;
- false alarms;
- cessation or interruption of any intended operation, even if accompanied by an alarm;
- initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm;
- error of a displayed numerical value sufficiently large to affect diagnosis or treatment;
- noise on a waveform in which the noise would interfere with diagnosis, treatment or monitoring;
- artifact or distortion in an image in which the artifact would interfere with diagnosis, treatment or monitoring;
- failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT and SYSTEMS may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect essential performance or safety.

Report No.: WT118000614

4. TEST EQUIPMENT USED

4.1. Test Equipment Used to Measure Radiated Disturbance

Table 2 Radiated Disturbance Test Equipment

No.	Equipment	Manufacturer	Model No.	LAST CALIB	Period
SB4538	EMI Test Receiver	Rohde & Schwarz	ESIB7	Jan.21,2011	1 Year
SB5472/02	Bilog Antenna	SCHWARZBECK	VULB9163	May.12,2010	1 Year

4.2. Test Equipment Used to Measure Electrostatic Discharge Immunity

Table 3 ESD Immunity Test Equipment

No.	Equipment	Manufacturer	Model No.	LAST CALIB	Period
SB2561	ESD tester	SCHNAFFNER	NSG435	Feb. 25, 2011	1 Year

4.3.Test Equipment Used to Measure Radio Frequency Electromagnetic Fields Immunity

Table 4 Radiated Electromagnetic Field Immunity Test Equipment

		= rectioning rotio	Tiola minitarity	Tool Equipine	111
No.	Equipment	Manufacturer	Model No.	LAST CALIB	Period
SB3433 Signal Generator		Rohde & Schwarz	SMT03	Jan.21,2011	1 Year
SB3437/02	Voltage Probe	Rohde & Schwarz	URV5-Z2	Jan.21,2011	1 Year
SB3173	Power Amplifier	AR	150W1000	Jan.21,2011	1 Year
SB3171	Bilog Antenna	AR	AT1080	Jan.21,2011	1 Year
SB3937	Horn Antenna	AR	AT4002A	Jan.21,2011	1 Year
SB3938	Power Amplifier	AR	25S1G4AM1	Jan.21,2011	1 Year

4.4. Test Equipment Used to Measure Power frequency magnetic field Immunity

Table 5 Power Frequency Magnetic Field Immunity Test

No.	Equipment	Manufacturer	Model No.	LAST CALIB	Period
SB2617	EMCPRO	KEYTEK	EMCPro	Jan.24,2011	1 Year
SB2617/01	Coil	FCC	F-1000-4-8/9/10-L -1M	Jan.24,2011	1 Year

5. RADIATED DISTURBANCE TEST

5.1. Test Standard and Limit

5.1.1.Test Standard IEC 60601-1-2:2007

5.1.2.Test Limit

Table 6 Radiated Disturbance Test Limit (Class B)

Frequency	Limit (dBμV/m)
	Quasi-peak Level
30MHz~230MHz	40
230MHz~1000MHz	47

^{*} The lower limit shall apply at the transition frequency.

5.2. Test Procedure

The EUT is placed on a turntable, which is 0.8 meter above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can move up and down between 1 to 4 meters to find out the maximum emission level. Broadband antenna is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test.

5.3. Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.

5.4. Test Data

Emissions don't show below are too low against the limits, the test curves are shown in the next page.

Table 7 Radiated Disturbance Test Data

del No.: TEK-O>			
est Mode: 1			
Frequency MHz	Readings dB(µV/m)	Polarization	Limits dB (μV/m)

Report No.: WT118000614 Page 11/28

^{*} The test distance is 3m.

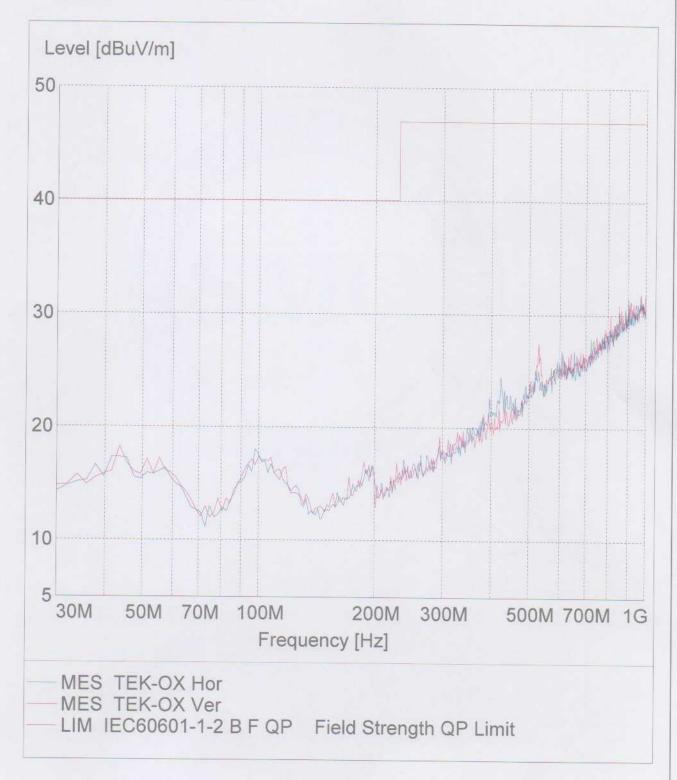
Radiated Emission

EUT:

M/N:TEK-OX

Operating Condition:

: Measuring


Test Site:

SMQ EMC Lab. SAC

Test Specification:

Horizontal & Vertical

Comment: DC 3V

6. ELECTROSTATIC DISCHARGE IMMUNITY TEST

6.1. Test Requirements

6.1.1.Test Standard IEC 60601-1-2:2007

6.1.2.Test Level

Table 8 Test Level Test Level for ESD

Port	Test Specification
Enclosure Port	2, 4, 8kV air discharge 2, 4, 6kV contact discharge

6.2. Test Procedure

6.2.1.Contact Discharge:

The ESD generator is held perpendicular to the surface to which the discharge is applied and the tip of the discharge electrode touch the surface of EUT. Then turn the discharge switch. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

6.2.2.Air Discharge:

Air discharge is used where contact discharge can't be applied. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

6.2.3.Indirect discharge for horizontal coupling plane

At least 10 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT.

6.2.4. Indirect discharge for vertical coupling plane

At least 10 single discharge shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

6.3. Test Data

Table 9 ESD Test Data

Location	Voltage(kV)	Amount of test points	Discharge Method	Results
HCP	±2, ±4, ±6	4	С	Pass
VCP	±2, ±4, ±6	4	С	Pass
Screen	±2, ±4 ±8	3	А	Pass
Buttons	±2, ±4 ±8	2	А	Pass
Nonconductive Enclosure	±2, ±4 ±8	4	А	Pass
Screws	±2, ±4 ±6	3	С	Pass

Report No.: WT118000614 Page 14/28

7. RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST

7.1. Test Requirements

7.1.1.Test Standard IEC 60601-1-2:2007

7.1.2.Test Level

Table 10 Test Level for Radiated Electromagnetic Field Immunity Test

Port	Test Specification
Enclosure Port	80-2500MHz 3 V/m 80 % AM(1kHz)

7.2. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarizations of the antenna are set on Test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.

7.3. Test Data

Table 11 Radiated Electromagnetic Field Immunity Test Data

Model No.: TEI	<-OX		
Test Mode: 1			
Frequency Range (MHz)	80-2500 MHz		
Field Strength (V/m)	3V/m		
Dwell time	1s		
Steps (%)	1%		
	Horizontal	Vertical	
Front	Pass	Pass	
Rear	Pass	Pass	
Left	Pass	Pass	
Right	Pass	Pass	

Report No.:WT118000614 Page 15/28

8. POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

8.1. Test Requirements

8.1.1.Test Standard IEC 60601-1-2:2007

8.1.2.Level

Table 12 Test Level for Power Frequency Magnetic Field Immunity

Port	Test Specification	
Enclosure	3A/m	

8.2. Test Procedure

The EUT shall be subjected to the test magnetic field by using the induction coil of standard dimensions $(1m\times1m)$. The induction coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

8.3. Test Data

Table 13 Power Frequency Magnetic Field Immunity Test Data

Frequency	Polarity	Duration (s)	Level (A/m)	Results
50Hz	X	120	3	Pass
50Hz	Υ	120	3	Pass
50Hz	Z	120	3	Pass
60Hz	X	120	3	Pass
60Hz	Υ	120	3	Pass
60Hz	Z	120	3	Pass

APPENDIX I TEST PICTURES

Photo 1 Radiated Disturbance

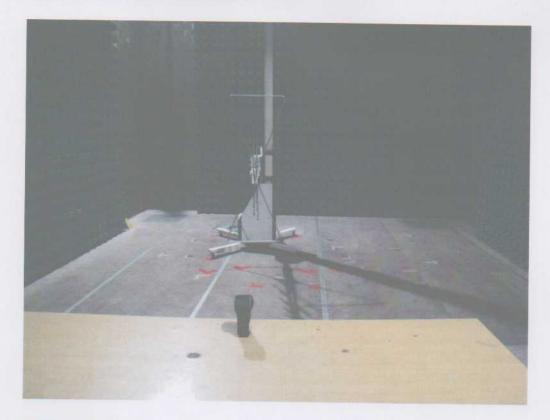


Photo 2 ESD Immunity Test

Photo 3 Radio Frequency Electromagnetic Field Immunity Test

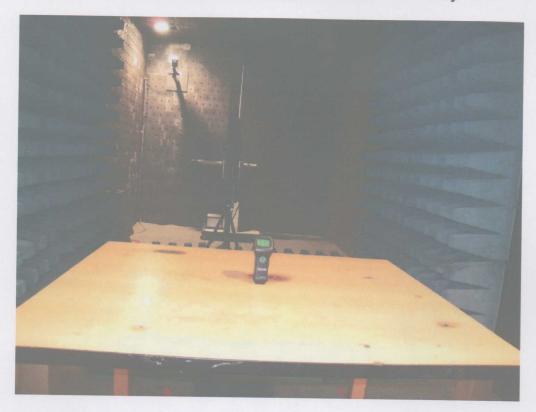
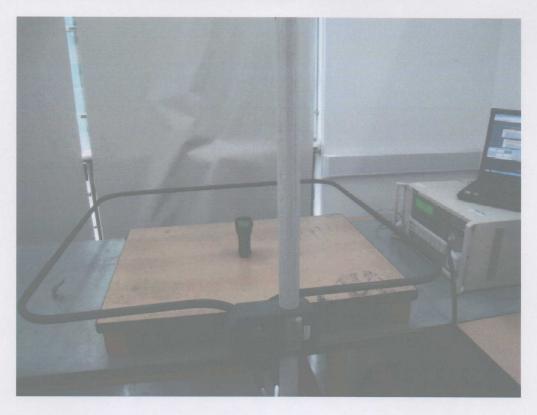



Photo 4 Radio Frequency Electromagnetic Field Immunity Test

Photo 5 Power Frequency Magnetic Field Immunity Test

Report No.: WT118000614 Page 20/28

APPENDIX II EUT PICTURES

Photo 1 Appearance of EUT

Photo 2 Appearance of EUT

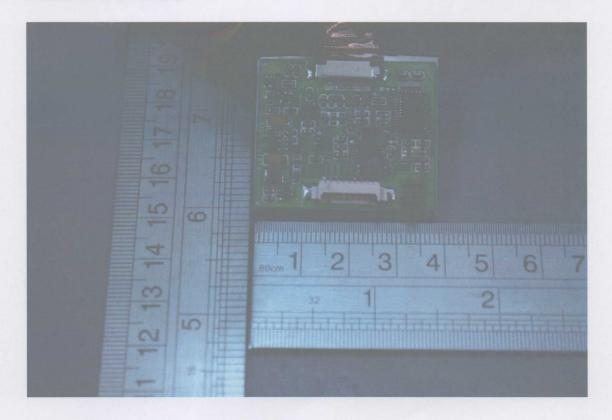
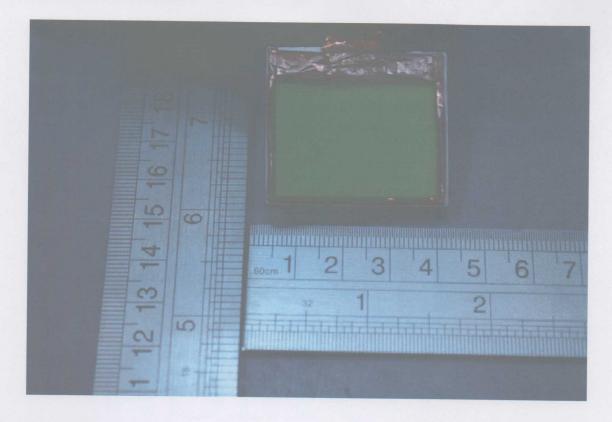


Photo 3 Inside of EUT


Photo 4 Inside of EUT

Report No.: WT118000614 Page 23/28

Photo 5 Inside of EUT

APPENDIX II EXAMPLE OF GUIDANCE AND MANUFACTURER'S

DECLARATION

Guidance and manufacturer's declaration

Guidance and manufacturer's declaration – electromagnetic emissions
The [EQUIPMENT or SYSTEM] is intended for use in the electromagnetic environment specified below. The customer or the user of the [EQUIPMENT or SYSTEM] should assure that it is used in such an environment.

Emissions test	Complianc e	Electromagnetic environment – guidance
RF emissions CISPR 11	Group 1	The [EQUIPMENT or SYSTEM] uses RF energy only for its internal function. Therefore, its RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.
RF emissions CISPR 11	Class B	
Harmonic emissions IEC 61000-3-2	Not applicable	
Voltage fluctuations/flicke r emissions IEC 61000-3-3	Not applicable	

Report No.: WT118000614

Guidance and manufacturer's declaration – electromagnetic immunity

The [EQUIPMENT or SYSTEM] is intended for use in the electromagnetic environment specified below. The customer or the user of the [EQUIPMENT or SYSTEM] should assure that it is used in such an environment.

Immunity test	IEC 60601 test level	Compliance level	Electromagnetic environment – guidance	
Electrostatic discharge (ESD) IEC 61000-4-2	±6 kV contact ±8 kV air	±6kV Contact ±8kV Air	Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30 %. If ESD interfere with the operation of equipment, counter measurements such as wrist strap, grounding shall be considered.	
Electrical fast transient/burst IEC 61000-4-4	±2 kV for power supply lines	Not applicable	Mains power quality should be that of a typical commercial or hospital environment.	
Surge IEC 61000-4-5	±1 kV differential mode ±2 kV common mode	Not applicable	Mains power quality should be that of a typical commercial or hospital environment.	
Voltage dips, short interruptions and voltage variations on power supply input lines IEC 61000-4-11	<5 % UT (>95 % dip in UT) for 0,5 cycle 40 % UT (60 % dip in UT) for 5 cycles 70 % UT (30 % dip in UT) for 25 cycles <5 % UT (>95 % dip in UT) for 5 sec	Not applicable	Mains power quality should be that a typical commercial or hospital environment. If the user of the [EQUIPMENT or SYSTEM] require continued operation during power mains interruptions, it recommended that the [EQUIPMEN or SYSTEM] be powered from a uninterruptible power supply or battery.	
Power frequency (50/60 Hz) magnetic field IEC 61000-4-8	3 A/m	3 A/m	Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment.	

Report No.:WT118000614

Guidance and manufacturer's declaration – electromagnetic immunity – for EQUIPMENT and SYSTEMS that are not LIFE-SUPPORTING

Guidance and manufacturer's declaration – electromagnetic immunity

The [EQUIPMENT or SYSTEM] is intended for use in the electromagnetic environment specified below. The customer or the user of the [EQUIPMENT or SYSTEM] should assure that it is used in such an environment.

Immunity test	IEC 60601 test level	Complianc e level	Electromagnetic environment – guidance
Conducted RF IEC 61000-4-6 Radiated RF IEC 61000-4-3	3 Vrms 150 kHz to 80 MHz 3 V/m 80 MHz to 2,5 GHz	Not applicable 3V/m	Portable and mobile RF communications equipment should be used no closer to any part of the [EQUIPMENT or SYSTEM], including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter. Recommended separation distance $d = 1.2 \frac{\sqrt{p}}{2}$ $d = 1.2 \frac{\sqrt{p}}{2}$ 80 MHz to 800 MHz $d = 2.3 \frac{\sqrt{p}}{2}$ 800 MHz to 2,5 GHz where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer and d is the recommended separation distance in metres (m). Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey, should be less than the compliance level in each frequency range. Interference may occur in the vicinity of equipment marked with the following symbol:

Recommended separation distances between portable and mobile RF communications equipment and the EQUIPMENT or SYSTEM – For EQUIPMENT and SYSTEMS that are not LIFE-SUPPORTING

Recommended separation distances between Portable and mobile RF communications equipment and the [EQUIPMENT or SYSTEM]

The [EQUIPMENT or SYSTEM] is intended for use in an electromagnetic environment in which radiated RF disturbances are controlled. The customer or the user of the [EQUIPMENT or SYSTEM] can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the [EQUIPMENT or SYSTEM] as recommended below, according to the maximum output power of the communications equipment.

Rated maximum output power of transmitter	Separation distance according to frequency of transmitter			
W	150 kHz to 80 MHz d = 1.16 \sqrt{p}	80 MHz to 800 MHz d = $1.16 \sqrt{p}$	800 MHz to 2.5 GHz d = $2.33 \sqrt{p}$	
0.01	0.12	0.12	0.23	
0.1	0.38	0.38	0.73	
1	1.2	1.2	2.3	
10	3.8	3.8	7.3	
100	12	12	23	

For transmitters rated at a maximum output power not listed above, the recommended separation distance d in meters (m) can be estimated using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

NOTE 1 At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

NOTE 2 These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

Report No.: WT118000614

Page 28/28